光刻工艺毕业论文

篇一:光刻工艺流程论文

光刻工艺流程

作者:张少军

陕西国防工业职业技术学院 电子信息学院 电子****班24号 710300

摘要:光刻(photoetching)是通过一系列生产步骤将晶圆表面薄膜的特定部分除去的工艺,在此之后,晶圆表面会留下带有微图形结构的薄膜。被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。

关键词:光刻胶;曝光;烘焙;显影;前景

Abstract: photoetching lithography (is) through a series of steps will produce wafer surface film of certain parts of the process, remove after this, wafer surface will stay with the film structure. The part can be eliminated within the aperture shape is thin film or residual island.

Keywords: the photoresist, Exposure; Bake; Enhancement; prospects

1基本光刻工艺流程—从表面准备到曝光

1.1光刻十步法

表面准备—涂光刻胶—软烘焙—对准和曝光—显影—硬烘焙—显影目测—刻蚀—光刻胶去除—最终目检。

1.2基本的光刻胶化学物理属性

1.2.1组成

聚合物+溶剂+感光剂+添加剂,普通应用的光刻胶被设计成与紫外线和激光反应,它们称为光学光刻胶(optical resist),还有其它光刻胶可以与X射线或者电子束反应。

■负胶:聚合物曝光后会由非聚合态变为聚合状态,形成一种互相粘结的物质,抗刻蚀的,大多数负胶里面的聚合物是聚异戊二烯类型的,早期是基于橡胶型的聚合物。

■正胶:其基本聚合物是苯酚-甲醛聚合物,也称为苯酚-甲醛Novolak树脂,聚合物是相对不可溶的,在用适当的光能量曝光后,光刻胶转变成可溶状态。

1.2.2光刻胶的表现要素

■分辨率:resolution capability、纵横比-aspect ratio(光刻胶厚度与图形打开尺寸的比值、正胶一般比负胶有更高的纵横比)。

■粘结能力:负胶的粘结能力通常比正胶强一些。

曝光速度、灵敏性和曝光源:反应速度越快,在光刻蚀区域晶圆的加工速度越快;灵敏性是与导致聚合或者光溶解发生所需要的能量总和相关的;波长越短的射线能量越高。 ■工艺宽容度:工艺维度越宽,在晶圆表面达到所需要尺寸的可能性就越大。

■针孔:针孔是光刻胶层尺寸非常小的空穴,光刻胶层越薄,针孔越多,典型的权衡之一;微粒和污染水平、阶梯覆盖度和热流程。

1.2.3正胶和负胶的比较

直到20世纪70年代中期,负胶一直在光刻工艺中占主导地位,到20世纪80年代,正胶逐渐被接受。两者相比优缺点如下:正胶的纵横比更高、负胶的粘结力更强曝光速度更快、正胶的针孔数量更好阶梯覆盖度更好,但成本更高、正胶使用水溶性溶剂显影而负胶使用有机溶剂显影。

1.2.4光刻胶的物理属性

■固体含量:solid content 一般在20%-40%。

■粘度:测试方法有落球粘度计量器、Ostwalk-Cannon-Fenske方法、转动风向标法、粘度单位是厘泊(centipoise),另一种单位称为kinematic粘度,它是centistoke,由 粘度(厘泊)除以光刻胶密度而得到,默认温度为25度。

■折射系数:index of refraction,对于光刻胶其折射率和玻璃接近约为1.45。

■储存与控制: 光热敏感度、粘性敏感度、清洁度??

1.3光刻工艺剖析

1.3.1表面准备

■微粒清除:高压氮气吹除、化学湿法清洗、旋转刷刷洗、高压水流。

■脱水烘焙:低温烘焙(150~200℃),憎水性-hydrophobic 亲水性-hydrophilic

■晶圆涂底胶:HMDS(六甲基乙硅烷) 沉浸式涂底胶、旋转式涂底胶、蒸气式涂底胶。

1.3.2涂光刻胶

普通的光刻胶涂胶方法有三种:刷法、滚转方法和浸泡法,IC封装用光刻胶的涂布方法如下:静态涂胶工艺、动态喷洒、移动手臂喷洒、手动旋转器、自动旋转器、背面涂胶。

1.3.3软烘焙

热传递的三种方式:传导、对流和辐射;常用的软烘焙加热方式如下:对流烘箱、手工热板、内置式单片晶圆加热板、移动带式热板、 移动带式红外烘箱、微波烘焙、真空烘焙。

1.3.4对准和曝光(A&E)

■对准系统的性能表现:对准系统包含两个主要子系统、一个是要把图形在晶圆表面上准备定位,另一个是曝光子系统,包括一个曝光光源和一个将辐射光线导向晶圆表面上的机械装置;

■对准与曝光系统:光学(接触式、接近式、投影式、步进式),非光学(X射线、电子束);■曝光光源:高压汞灯、准分子激光器、X射线及电子束。

■对准法则:第一个掩膜版的对准是把掩膜版上的Y轴与晶圆上的平边成90°放置,接下来的掩膜都用对准标记(又称靶)与上一层带有图形的掩膜对准。对准误差称为未对准(misalignment)。

■曝光后烘焙(PEB):驻波是使用光学曝光和正性光刻胶时出现的问题,一种减少驻波效应的方法是在曝光后烘焙晶圆,PEB的时间和温度的规格是烘焙方法、曝光条件以及光刻胶化学所决定的。

2基本光刻工艺流程—从曝光到最终检验

2.1显影

通过对未聚合光刻胶的化学分解来使图案显影,显影技术被设计成使之把完全一样的掩膜版图案复制到光刻胶上。

2.1.1负光刻胶显影

二甲苯或stoddart溶剂显影,n-丁基醋酸盐冲洗。

2.1.2正光刻胶显影

碱(氢氧化钠或氢氧化钾)+水溶液、或叠氮化四甲基铵氢氧化物的溶液(TMAH)。

2.1.3湿法显影

沉浸-增加附属方法提高显影工艺,机械搅动、超声波或磁声波等;喷射-对负胶而言是标准工艺,对温度敏感的正胶却不是很有效,隔热冷却(adiabatic cooling);混凝-是用以获得正胶喷射显影工艺优点的一种工艺变化;等离子去除浮渣-不完全显影造成的一个特俗困难叫做浮渣(scumming),用氧等离子去除。

2.1.4干法(或等离子)显影

干法光刻胶显影要求光刻胶化学物的曝光或未曝光的部分二者之一易于被氧等离子体去除,换言之图案的部分从晶圆表面上氧化掉,一种DESIRE的干法显影工艺会使用甲基硅烷和氧等离子体。

2.2硬烘焙

与软烘焙一样通过溶液的蒸发来固化光刻胶,常见工艺流程如下:显影—检验—硬烘焙—刻蚀;显影/烘焙—检验—刻蚀;显影/烘焙—检验—重新烘焙—刻蚀;硬烘焙温度的上限是以光刻胶流动点而定,高温烘焙会产生边缘线等不良现象。

2.3显影检验(develop inspect DI)

目的是区分那些有很低可能性通过最终掩膜检验的晶圆、提供工艺性能和工艺控制数据、以及分拣出需要重做的晶圆。晶圆被返回掩膜工艺称为重新工艺处理(rework或redo)<10% 5%比较理想。

2.3.1检验方法

人工检验(1倍检验)、显微镜检验(随机抽样random sampling)、关键尺寸(Critical Dimension,CD)、自动检验。

2.3.2显影检验拒收的原因

检验遵循“首先-不足”(first-fail basis)原理,碎晶圆、划伤、污染、小孔、MA、桥接、不完全显影、光刻胶翘起、曝光不足、无光刻胶、光刻胶流动、不正确的掩膜版、CD??

2.4刻蚀

主要有湿法和干法刻蚀,两种方法的主要目标是将光刻掩膜版上的图案精确地转移到晶圆的表面,其他刻蚀工艺的目标包括一致性、边缘轮廓控制、选择性、洁净度和所有权成本最低化。

2.4.1湿法刻蚀

历史上的刻蚀方法一直是使用液体刻蚀剂沉浸的技术,对于晶圆被刻蚀剂污染的担忧由增加出口过滤器(point-of-use filter)来解决;不安完全刻蚀、过刻蚀(overetch)、各向异性刻蚀(anisotropic)、各向同性刻蚀(isotropic)、底切(undercutting)、选择性(selectivity)。 ■硅湿法刻蚀:硝酸加氢氟酸的混合水溶液,醋酸等可用来控制放热反应。

■二氧化硅湿法刻蚀:基本的刻蚀剂是氢氟酸(HF),实际中用49%的氢氟酸与水或氟化胺与水混合。氟化胺[NH<INF/4F>]来缓冲会加速刻蚀速率的氢离子的产生,这种刻蚀溶液称为缓冲氧化物刻蚀(buffered oxide etche)或BOE。

■铝膜湿法刻蚀:对于铝和铝合金有选择性的刻蚀溶液是基于磷酸的(含有磷酸、硝酸、醋酸、水和湿化代理物16:1:1:2),可有效消除雪球(snow ball)等气泡现象。

■淀积氧化物湿法刻蚀:(铝膜上的二氧化硅钝化膜),一般用BOE溶液刻蚀,但容易造成Brown或stain,受青睐的刻蚀剂是氟化胺和醋酸1:2的混合水溶液。

■氮化硅湿法刻蚀:180℃热磷酸溶液,一般光刻胶承受不了此温度和刻蚀速率,改用干法。 ■湿法喷射刻蚀:其主要优点是喷射的机械压力而增加了精确度、减小污染、可控性更强、工艺一致性更好,缺点在于成本以及压力系统中有毒刻蚀剂的安全性和对机器老化性的考验。

■蒸气刻蚀:用HF蒸气在密封的系统中进行(一种新的技术)。

■小尺寸湿法刻蚀的局限:湿法刻蚀局限于3微米以上的图案尺寸;湿法刻蚀为各向同性刻蚀导致边侧形成斜坡;湿法刻蚀工艺要求冲洗和干燥步骤;(原文来自:wWw.xiaOcAofANweN.coM 小 草 范 文 网:光刻工艺毕业论文)液体化学品有毒害;湿法工艺具有潜在的污染;光刻胶粘结力的失效导致底切。

2.4.2干法刻蚀(dry etching)

等离子体、离子束打磨(刻蚀)和反应离子刻蚀(RIE)

篇二:光刻工艺论文

摘要:在平面晶体管和集成电路生产中,要进行多次的光刻,以实现选择性扩散和金属膜布线的目的。光刻工艺是利用光刻胶的感光性和耐蚀性,在SIO2或金属膜上复印并刻蚀出与掩模版完全对应的几何图形.由于光刻工艺是一种非常精细的表面加工技术,在平面器件和集成电路生产中得到广泛应用.如果把硅片的外延、氧化、扩散和淀积看成是器件结构的纵向控制的话,那么,器件的横向控制就几乎全部有光刻来实现.因此,光刻的精度和质量将直接影响器件的性能指标,同时也是影响器件的成品率和可靠性的重要因素.

目前生产上通常采用的紫外光接触暴光法光刻工艺的一般过程;列出几种常用的光刻腐蚀剂配方;最后对光刻工艺中较常见的质量问题进行分析和讨论.

1光刻胶的特性和配置

1.光刻胶的性质

光致抗蚀剂是一种主要由碳、氢等元素组成的高分子化合物,其分子结构有线型和体型两种。线型高分子化合物,其长链之间的结合力主要是靠化学键。由于分子间作用力比化学键的结合要弱的多,所以线型高分子化合物一般是可溶性的,而体型高分子化合物往往是难溶性的。

如果在高分子化合物内部存在不稳定的双键等可变因素的话,则在外界光或热的作用下,高分子化合物的分子结构就可能会在线型和体型之间发生变化。分子结构的变化,必然会引起高分子化合物的机械和物理性质的相应变化。例如,由可溶性变为不可溶性或者相反。光刻工艺就是利用光致抗蚀剂有这样内在的可变因素,在一定条件下使部分高分子化合物由可溶性转变为不可溶性,或由不可溶性转变为可溶性,将掩模上的图形复印在光刻胶膜上。然后利用光刻胶膜对腐蚀液的抗蚀性,在硅片表面选择性地刻蚀SIO2或金属膜,实现定域扩散及金属膜布线的目的。

2.光致抗蚀剂的种类

根据光致抗蚀剂在曝光前后溶解性的变化,可以分为正性光刻胶和负性光刻胶两种。

(1) 负性光致抗蚀剂 曝光前光致抗蚀剂在有机溶剂中是可溶解的,曝光后成为不可溶的物质,这类抗蚀剂称为负性光致抗蚀剂,由此组成的光刻胶称为负性胶。目前,主要的负性光致抗蚀剂有聚肉桂酸酯类,聚酯类和环化橡胶类等。

①聚肉桂酸脂类 聚肉桂酸脂类抗蚀剂的特点是在树脂分子的侧链上带有肉桂酰感光性官能团。典型的聚肉桂酸脂类抗蚀剂有聚乙烯醇脂(又称KPR),他是一种浅黄色的纤维状固体,能溶解于丙酮,丁酮,环已酮等有机溶剂中。

在紫外光的作用下,肉桂酰官能团发生二聚反应,引起聚合物分子间的交联,形成不溶于显影液的立体网状结构。光刻胶中加入适量的5-硝基苊,不仅扩大了感光波长范围,而且提高了光刻胶的感光灵敏度,缩短了暴光时间。聚乙烯醇肉桂酸脂经交联反应后生成的立体网状分子结构不再溶于有机溶剂,干燥后又能耐酸的腐蚀,光刻腐蚀后可以通过多种途径去除干净,因此在光刻技术中得到了广泛的应用。

②聚脂类 聚脂类光致抗蚀剂的特点,是在树脂分子的侧链上含有共轭双键的感光性官能团,具有较强的感光灵敏度;在感光性树脂分子的主链上含有极性基团,因而对一些衬底材

料,如SIO2和AL,有较好的粘附性。聚酯类光刻胶也可用5-硝基苊作增感剂以缩短暴光时间。聚酯胶与聚乙烯醇肉桂酸酯比较,前者粘附性好,分辨率高,适合于刻蚀细线条。

③环化橡胶类 环化橡胶类抗蚀剂的特点是,其交联反应由带有双感光性官能团的交联剂,在暴光后产生双自由基,和附近的环化橡胶分子相互作用,在聚合物分子链之间形成桥键,从而变成三维结构的不溶性物质。

由于这类抗蚀剂和衬底材料有较强的粘附性,抗蚀能力也很强,特别适合于金属材料的刻蚀。但由于氧会使交联剂的光化学分解反应停留在中间阶段,即停留在生成N—R—N3的阶段而阻碍了交联反应的进行,因此暴光要在充氮或真空条件下进行。

⑵正性光致抗蚀剂 暴光前对某些溶剂是不可溶的,而暴光后却变成了可溶性的抗蚀剂称为正性光致抗蚀剂。暴光后,可用稀碱性水溶液进行显影。这时光照部分由于生成羧酸盐而溶解,而未受光照部分难溶,因而显出与掩膜版相同的正图象。

正性抗蚀剂的抗碱性差而耐酸性好,所以常用1.5~3%Na3PO4水溶液进行显影,为了避免钠离子对器件的不良影响,也可用有机碱性水溶液进行显影,如氢氧化四烷基铵水溶液等.由于碱性显影液会受空气中CO2的影响而变质,因此显影速率会随时间发生变化.但正性光刻胶分辨率高,边缘整齐,反刻时易于套刻,是一种重要的抗蚀剂.

⒊对光致抗蚀剂性能的要求

⑴分辨率高 分辨率是指某种光刻胶光刻时所能得到的最小尺寸.它通常用1mm的宽度上能刻蚀出可分辨的最大线条数目来表示.若能刻蚀出可分辨的最小线宽为W/2,线与线之间距离也为W/2,则分辨率为1/W,单位为条线 .

分辨率与光刻工艺有关;也与光致抗蚀剂本身的结构性质有关.例如正性胶的分辨率高于负性胶;光刻胶的平均分子量越低,分子量的分散性越小,则分辨率越高.

⑵灵敏度高 光致抗蚀剂的感光灵敏度反映了光刻胶感光所必须的照射量,照射量正比于光强和暴光时间.对于正性胶,灵敏度定义为暴光显影后膜后为零时的最小照射量;对于负性胶,灵敏度是指暴光显影后膜厚可保留至原膜厚二分之一的照射量。

光刻胶的感光灵敏度和光刻胶的性质及光刻工艺有关。例如,由于负性胶在暴光时其交联反应会出现连锁反应,因而负性胶一般比正性胶具有更高的灵敏度。在工艺上,涂胶厚度,显影条件,光源的光谱成分以及增感剂的作用等都对灵敏度有影响。

⑶粘附性好 抗蚀剂与衬底(如SIO2,金属等)之间粘附的牢固程度直接影响到光刻的质量。影响粘附性的因素有抗蚀剂的性质,衬底的性质及其表面情况。实践表明,平整,致密,清洁,干燥的衬底表面有利于光刻胶的粘附。衬底表面的灰尘,油污,水汽以及高低不平,会形成光刻胶粘附的薄弱区域。

由于大多数抗蚀剂都是疏水性的,而湿氧氧化的SIO2表面含有硅醇基(—Si—OH),羟基形式的表面很容易因氢键的作用而吸附水分子,形成亲水性表面。疏水性的抗蚀剂和亲水性衬底之间的粘附性很差。在生产中,湿氧氧化后一般都要用高温干氧吹干表面,以形成硅氧

桥表面结构(O—SI—O),从而改善其粘附性。为了避免硅片表面粘污和水汽的不良影响,最好从高温炉中取出后立即进行涂胶,以保证光刻胶和衬底之间有良好的粘附性。此外,粘附性与胶膜厚度,暴光和烘焙因素也有密切关系。

⑷抗蚀性好 光刻工艺要求抗蚀剂在坚膜后,能较长时间地抵抗腐蚀剂的侵蚀。光致抗蚀剂的抗蚀性与其本身的性质有关。例如环化橡胶类抗蚀剂比聚肉桂酸酯类抗蚀剂有更好的抗蚀性能。

⑸稳定性好光刻工艺要求抗蚀剂在室温和避光的情况下,即使加入了增感剂也不发生暗反应;在烘烤干燥时,不发生热交联。为了提高抗蚀剂的稳定性,可能加入能抑制活性基团自发反应的稳定剂。例如,KPR胶可以加对苯二酚等。

此外,还要求光刻胶成膜性好,致密性好,针孔密度低,固态微粒含有率低,显影后无残渣,刻蚀后易去除干净等性能。

⒋光刻胶的配制 光刻时,需根据具体要求将光致抗蚀剂配成胶状液体,称为光刻胶。光刻胶配制时,应根据不同的刻蚀要求,选取合适的抗蚀剂,增感剂和溶剂。

溶剂的用量决定着光刻胶的稀稠,从而影响光刻胶膜的厚薄。光刻胶膜薄,暴光时光的散射和衍射作用影响较小,显影时间也缩短,因此光刻图形清晰,边缘整齐,有利于提高分辨率。但胶膜薄时,抗蚀能力降低,针孔密度会增加。所以,应根据各次光刻对分辨率和抗蚀性的要求来决定光刻胶的浓度。配比选择的一般原则是在保证抗蚀能力的条件下,用较薄的胶膜,以提高分辨率。

增感剂的用量,决定着光刻胶的感光灵敏度。光刻胶中加入适量增感剂,可以缩短暴光时间。增感剂用量过多,光在感光膜表面被强烈吸收,会造成内层光刻胶暴光不足,显影时出现浮胶。增感剂过多还会使胶膜变脆,增感剂在显影时被溶解还会使针孔密度增加。因此增感剂的用量必须适当。

对于KPR光刻胶,其组分的变化范围通常为:

抗蚀剂 聚乙烯醇肉桂酸酯 5~10%

增感剂 5—硝基苊 0.25~1.0%

溶剂环已酮 90~95%

对于聚酯类光刻胶,常用的配方为:

抗蚀剂 聚肉桂叉丙二酸乙醇酯 12ɡ

增感剂 5—硝基苊 0.24g

溶剂环已酮 100ml

光刻时,可以根据不同的光刻对象和要求,选用不同配比的光刻胶。

光刻胶一般在暗室红灯下配制,待光刻胶充分溶解后,可用离心法,过滤法或沉降法除去光刻胶中的故态杂质微粒。离心法是用每分钟10000~12000转的不锈钢离心管高速旋转,使固态微粒在离心力作用下沉积于不锈钢管底部而除去。过滤法是将光刻胶通过压滤,吸滤或自然过滤的方法,经微孔过滤膜而除去固态微粒。沉降法是将配好的光刻胶在干燥避光的环境中静置数天,使固体微粒自然沉降而除去,得到均匀,澄清的光刻胶供光刻工艺使用。

2光刻工艺过程

在平面管和集成电路生产中,都要经过多次光刻。虽然各次光刻的目的要求和工艺条件有所差别,但其工艺过程是基本相同的。光刻工艺一般都要经过涂胶,前烘,暴光,显影,坚膜,腐蚀和去胶等七个步骤

1.涂胶 涂胶就是在SIO2或其他薄膜表面,涂布一层粘附良好,厚度适当,厚薄均匀的光刻胶膜。涂胶前的硅片表面必须清洁干燥,如果硅片搁置较久或光刻返工,则应重新进行清洗并烘干后再涂胶。生产中,最好在氧化或蒸发后立即涂胶,此时硅片表面清洁干燥,光刻胶的粘附性较好。

涂胶一般采用旋转法,其原理是利用转动时产生的离心力,将滴在硅片的多余胶液甩去,在光刻胶表面张力和旋转离心力共同作用下,扩展成厚度均匀的胶膜。胶膜厚度可通过转速和胶的浓度来调节。

涂胶的厚度要适当,膜厚均匀,粘附良好。胶膜太薄,则针孔多,抗蚀能力差;胶膜太厚,则分辨率低。在一般情况下,可分辨线宽约为膜厚的5~8倍。

2.前烘 前烘就是在一定的温度下,使胶膜里的溶剂缓慢地挥发出来,使胶膜干燥,并增加其粘附性和耐磨性。

前烘的温度和时间随胶的种类及膜厚的不同而有所差别,一般通过实验来加以确定。

前烘的温度和时间必须适当。温度过高会引起抗蚀剂的热交联,在显影时留下底膜,或者增感剂升华挥发使感光灵敏度下降;前烘温度过低或时间过短,则抗蚀剂中的有机溶剂不能充分挥发,残留的溶剂分子会妨碍光交链反应,从而造成针孔密度增加,浮胶或图形变形等。同时,前烘时还不能骤热,以免引起表面鼓泡,产生针孔甚至浮胶。一般前烘是在80℃恒温干燥箱中烘烤1015分钟;也可以用红外灯在硅片背面烘烤,使胶膜的干燥从里到外,以获得良好的前烘效果。

3.暴光 暴光就是对涂有光刻胶的基片进行选择性光化学反应,使暴光部分的光刻胶改变在显影液中的溶解性,经显影后在光刻胶膜上得到和掩膜版相对应的图形。

生产上,通常都采用紫外光接触暴光法,其基本步骤是定位对准和暴光。定位对准是使掩膜版的图形和硅片上的图形精确套合,因此要求光刻机有良好的对准装置,即具有精密的微调和压紧机构,特别是在压紧时保证精确套合不发生位移。此外,光刻机还应具有合适的光学观察系统,要求有一个景深较大,同时又有足够高分辨率的显微镜。

暴光量的选择决定于光刻胶的吸收光谱,配比,膜厚和光源的光谱分布。最佳暴光量的确定,还要考虑衬底的光反射特性。在实际生产中,往往以暴光时间来控制暴光量,并通过实验来确定最佳暴光时间。

暴光时影响分辨率的因素有:

① 掩膜版于光刻胶膜的接触情况 若硅片弯曲,硅片表面有灰尘或突起,胶膜厚度不均匀,光刻机压紧机构不良等都会影响掩膜版与光刻胶膜的接触情况,从而使分辨率降低。

② 暴光光线的平行度 暴光光线应与掩膜版和胶膜表面垂直,否则将使光刻图形发生畸变。

③ 光的衍射和反射 光波在掩膜版图形边缘的衍射和反射将使分辨率降低。

④ 光刻胶膜的质量和厚度 胶膜越厚,光刻胶中固态微粒含量越高,则光线在胶膜中因散射而产生的侧向光化学反应越严重,光刻图形的分辨率也越低。

⑤ 暴光时间 暴光时间越长,由于光的衍射,反射和散射作用,使分辨率降低。但暴光不足,则光反应不充分,显影时部分胶被溶解,从而使胶膜的抗蚀能力降低,针孔密度增加。

⑥ 掩膜版的分辨率和质量 掩膜版的分辨率和质量将影响光刻分辨率。此外,显影,腐蚀以及光刻胶的性能也是影响光刻分辨率的因素。

4.显影 显影是把暴光后的基片放在适当的溶剂里,将应去除的光刻胶膜溶除干净,以获得腐蚀时所需要的抗蚀剂膜的保护图形,KPR胶通常用丁酮

5坚膜 坚膜是在一定温度下对显影后的硅片进行烘焙,除去显影时胶膜所吸收的显影液和残留的水份,改善胶膜与硅片的粘附性,增强角膜的抗蚀能力。

坚膜的温度和时间要适当。坚膜不足,则抗蚀剂胶膜没有烘透,膜与基片粘附性差,腐蚀时易浮胶;坚膜温度过高,则抗蚀剂胶膜会因热膨胀而翘曲或剥落,腐蚀时同样会产生钻蚀或浮胶。温度更高时,聚合物将分解,影响粘附性和抗蚀能力。此外,坚膜时最好采用缓慢升温和自然冷却的烘焙过程。对于腐蚀时间较长的厚膜刻蚀,可在腐蚀一半后再进行一次坚膜,以提高胶膜的抗蚀能力。

6 腐蚀 腐蚀就是用适当的腐蚀剂,对未被胶膜覆盖的SiO2或其他薄膜进行腐蚀,以获得完整、清晰、准确的光刻图形,达到选择性扩散或金属布线的目的。

篇三:光刻技术论文

超大规模基集成电路

制造技术

专业班级:电子与通信工程 学 号:122212065

学 院:中南大学物理与电子学院

姓 名:罗 伟

光刻技术:发展路径及未来趋势

摘要:光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。

关键词:光刻技术;纳米器件;分辨力增强;Photons;Particles

1介绍 光刻技术是在一片平整的硅片上构建半导体MOS管和电路的基础,这其中包含有很多步骤与流程。首先要在硅片上涂上一层耐腐蚀的光刻胶,随后让强光通过一块刻有电路图案的镂空掩模板(MASK)照射在硅片上。被照射到的部分(如源区和漏区)光刻胶会发生变质,而构筑栅区的地方不会被照射到,所以光刻胶会仍旧粘连在上面。接下来就是用腐蚀性液体清洗硅片,变质的光刻胶被除去,露出下面的硅片,而栅区在光刻胶的保护下不会受到影响。随后就是粒子沉积、掩膜、刻线等操作,直到最后形成成品晶片(WAFER)。

2 光刻技术的纷争及其应用状况

众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。

2.1 以Photons为光源的光刻技术

在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。

紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等.

深紫外技术是以KrF气体在高压受激而产生的等离子体发出的深紫外波长(248 nm和193 nm)的激光作为光源,配合使用i线系统使用的一些成熟技术和分辨率增强技术(RET)、高折射率图形传递介质(如浸没式光刻使用折射率常数大于1的液体)等,可完全满足O.25~

0.18μm和0.18μm~90 nm的生产线要求;同时,90~65 nm的大生产技术已经在开发中,如光刻的成品率问题、光刻胶的问题、光刻工艺中缺陷和颗粒的控制等,仍然在突破中;至于深紫外技术能否满足65~45 nm的大生产工艺要求,目前尚无明确的技术支持。相比之下,由于深紫外(248 nm和193 nm)激光的波长更短,对光学系统材料的开发和选择、激光器功率的提高等要求更高。目前材料主要使用的是融石英(Fused silica)和氟化钙(GaF2),激光器的功率已经达到了4 kW,浸没式光刻使用的液体介质常数已经达到1.644等,使得光刻技术在选择哪种技术完成100nm以下的生产任务时,经过几年的沉默后又开始活跃起来了。投影成像系统方面,主要有反射式系统(Catoptrics)、折射式系统(Dioptrics)和折反射式系统(Catadioptrics),

极紫外(EUV)光刻技术早期有波长10~100 nm和波长1~25 nm的软X光两种,两者的主要区别是成像方式,而非波长范围。前者以缩小投影方式为主,后者以接触/接近式为主,目前的研发和开发主要集中在13 nm波长的系统上。极紫外系统的分辨率主要瞄准在13~16 nm的生产上。光学系统结构上,由于很多物质对13 nm波长具有很强的吸收作用,透射式系统达不到要求,开发的系统以多层的铝(Al)膜加一层MgF2保护膜的反射镜所构成的反射式系统居多。主要是利用了当反射膜的厚度满足布拉格(Bragg)方程时,可得到最大反射率,供反射镜用。目前这种系统主要由一些大学和研究机构在进行技术研发和样机开发,光源的功率提高和反射光学系统方面进步很快,但还没有产业化的公司介入。考虑到技术的延续性和产业发展的成本等因素,极紫外(EUV)光刻技术是众多专家和公司看好的、能够满足未来16 nm生产的主要技术。但由于极紫外(EUV)光刻掩模版的成本愈来愈高,产业化生产中由于掩模版的费用增加会导致生产成本的增加,进而会大大降低产品的竞争力,这是极紫外(EUV)光刻技术快速应用的主要障碍。为了降低成本,国外有的研发机构利用极紫外(EUV)光源,结合电子束无掩模版的思想,开发成功了极紫外(EUV)无掩模版光刻系统,但还没有商品化,进入生产线。

X射线光刻技术也是20世纪80年代发展非常迅速的、为满足分辨率100 nm以下要求生产的技术之一。主要分支是传统靶极X光、激光诱发等离子X光和同步辐射X光光刻技术。特别是同步辐射X光(主要是O.8 nm)作为光源的X光刻技术,光源具有功率高、亮度高、光斑小、准直性良好,通过光学系统的光束偏振性小、聚焦深度大、穿透能力强;同时可有效消除半阴影效应(Penumbra Effect)等优越性。X射线光刻技术发展的主要困难是系统体积庞大,系统价格昂贵和运行成本居高不下等等。不过最新的研究成果显示,不仅X射线光源的体积可以大大减小,近而使系统的体积减小外,而且一个X光光源可开出多达20束X光,成本大幅降低,可与深紫外光光刻技术竞争。

2.2 以Particles为光源的光刻技术

以Particles为光源的光刻技术主要包括粒子束光刻、电子束光刻,特别是电子束光刻技术,在掩模版制造业中发挥了重要作用,目前仍然占有霸主地位,没有被取代的迹象;但电子束光刻由于它的产能问题,一直没有在半导体生产线上发挥作用,因此,人们一直想把缩小投影式电子束光刻技术推进半导体生产线。特别是在近几年,取得了很大成就,产能已经提高到20片/h(φ200 mm圆片)。

电子束光刻进展和研发较快的是传统电子束光刻、低能电子束光刻、限角度散射投影电子束光刻(SCALPEL)和扫描探针电子束光刻技术(SPL)。传统的电子束光刻已经为人们在掩模版制造业中广泛接受,由于热/冷场发射(FE)比六鹏化镧(LaB6)热游离(TE)发射的亮度能提高100~1000倍之多,因此,热/冷场发射是目前的主流,分辨率覆盖了100~200 nm的范围。但由于传统电子束光刻存在前散射效应、背散射效应和邻近效应等,有时会造成光致抗蚀剂图形失真和电子损伤基底材料等问题,由此产生了低能电子束光刻和扫描探针电子束光

刻。低能电子束光刻光源和电子透镜与扫描电子显微镜(SEM)基本一样,将低能电子打入基底材料或者抗蚀剂,以单层或者多层L-B膜(Langmuir-Blodgett Film)为抗蚀剂,分辨率可达到10 nm以下,目前在实验室和科研单位使用较多。扫描探针电子束光刻技术(SPL)是利用扫描隧道电子显微镜和原子力显微镜原理,将探针产生的电子束,在基底或者抗蚀剂材料上直接激发或者诱发选择性化学作用,如刻蚀或者淀积进行微细图形加工和制造。SPL目前比较成熟,主要应用领域是MEMS和MOEMS等纳米器件的制造,随着纳米制造产业的快速发展,扫描探针电子束光刻技术(SPL)的前景有望与光学光刻媲美。另外一种比较有潜力的电子束光刻技术是SCALPEL,由于SCALPEL的原理非常类似于光学光刻技术,使用散射式掩模版(又称鼓膜)和缩小分步扫描投影工作方式,具有分辨率高(纳米级)、聚焦深度长、掩模版制作容易和产能高等优势,很多专家认为SCALPEL是光学光刻技术退出历史舞台后,半导体大生产进入纳米阶段的主流光刻技术,因此,有人称之为后光学光刻技术。

粒子束光刻发展较快的有聚焦粒子束光刻(FIB)和投影粒子束光刻,由于光学光刻的不断进步和不断满足工业生产的需要,使离子束光刻的应用已经有所扩展,如FIB技术目前主要的应用是将FIB与FE-SEM连用,扩展SEM的功能和使得SEM观察方便;另外,通过方便的注射含金属、介电质的气体进入FTB室,聚焦离子分解吸附在晶圆表面的气体,可完成金属淀积、强化金属刻蚀、介电质淀积和强化介电质刻蚀等作用。投影粒子束光刻的优点很明显,但缺点也很明显,如无背向散射效应和邻近效应,聚焦深度长,大于l0μm,单次照射面积大,故产能高,目前可达φ200 mm硅片60片/h,可控制粒子对抗蚀剂的渗透深度,较容易制造宽高比较大的三维图形等等;但也有很多缺点,如因为空间电荷效应,使得分辨率不好,目前只达到80~65 nm,较厚的掩模版散热差,易受热变形,有些时候还需要添加冷却装置等等。近几年由于电子束光刻应用的迅速扩展,粒子束光刻除了在FIB领域的应用被人们接受外,在MEMS的纳米器件制作领域也落后于电子束和光学光刻,同时,人们对其在未来半导体产业中的应用也没有给予厚望

2.3 物理接触式光刻技术

通过物理接触方式进行图像转印和图形加工的方法有多年的开发,但和光刻技术相提并论,并纳入光刻领域是产业对光刻技术的要求步入纳米阶段和纳米压印技术取得了技术突破以后。物理接触式光刻主要包括Printing、Molding和Embossing,其核心是纳米级模版的制作,图4所示的是Printing(a)和Embossing(b)工艺流程原理。物理接触式光刻技术中,以目前纳米压印技术最为成熟和受人们关注,它的分辨率已经达到了10 nm,而且图形的均一性完全符合大生产的要求,目前的主要应用领域是MEMS、MOEMS、微应用流体学器件和生物器件,预测也将是未来半导体厂商实现32 nm技术节点生产的主流技术。由于目前实际的半导体规模生产技术还处在使用光学光刻技术苦苦探索和解决65 nm工艺中的一些技术问题,而纳米压印技术近期在一些公司的研究中心工艺上取得的突破以及验证的技术优势,特别是EV Group和MII(Molecular Imprinting Inc)为一些半导体设计和工艺研究中心提供的成套光刻系统(包括涂胶机、纳米压印光刻机和等离子蚀刻系统)取得的满意数据,使得人们觉得似乎真正找到了纳米制造技术的突破口。因此,一些专家预测,到2015年,市场对纳米成像工具、模版、光刻胶以及其他耗材的需求将达到约15亿美元,最大的客户仍然是半导体产业和微电子产品制造业,约占52%左右。另外,值得一提的是,纳米压印技术中最具被半导体工业化所首选的是软光刻技术。技术优点是结合了纳米压印的思想和紫外光刻良好的对准特性,即可灵活的选择多层软模型,进行精确对位,也可在室温下工作,使用低于100kPa的压力压印。

2.4 其它光刻技术

光刻技术常见的技术方案如上所述的紫外光刻、电子束光刻、纳米压印光刻等,以广为业界的人们所熟悉。但近年来,在人们为纳米级光刻技术探索出路的同时,也出现了许多新的技术应用于光刻工艺中,主要有干涉光刻技术(CIL)、激光聚焦中性原子束光刻、立体光刻技术、全息光刻技术和扫描电化学光刻技术等等。其中成像干涉光刻技术(IIL)发展最快,主要是利用通过掩模版光束的空间频率降低,可使透镜系统收集,然后再还原为原来的空间频率,照射衬底材料上的抗蚀剂,传递掩模版图形,可以解决传统光学光刻受限于投影透镜的传递质量和品质,无法收集光束的较高频率部分,使图形失真的问题。其他的光刻技术因为在技术上取得的突破甚微,距离应用相当遥远,此处不再赘述。

3 光刻技术的技术性和经济性比较

光刻技术作为产业发展的技术手段,那种技术为产业界所普遍接受和采纳,是一个集技术性和经济性综合比较的产物。一方面,就狭义光刻技术(包括光刻机技术、涂胶/现像机技术等)本身而言,有技术和经济的权衡;另一方面,光刻技术的进步还会受到广义上光刻技术(还包括掩模版及其制造技术、光刻胶及其制造技术、蚀刻和粒子注入技术等)的影响。因此,本文就对光刻技术在技术性和经济性方面发表点拙见。

3.1 技术性比较

一方面,从目前几种光刻技术本身的发展和开发使用状况来看,深紫外光刻、极紫外光刻、限角度散射投影电子束光刻、扫描探针电子束光刻技术、纳米压印光刻等,在能力上都有可能解决90 nm以下的半导体产业和微电子产品规模化生产问题,但真正产业化都有问题;另一方面,从技术的标准和如何与已经形成的现有光刻的庞大体系相互融合,顺利过渡,这些技术所处的状态各不相同。就像半导体产业在20世纪80~90年代的发展过程中,工艺技术形成了2~3个大的IP体系,也就是以IBM和TI等为核心的体系、以Siement和Toshiba为核心的体系一样,光刻技术目前逐渐也在形成2~3大体系,特别是光学光刻技术和纳米压印技术,这就意味着那个体系发展快,产业化进程迅速,良好解决了技术的衔接和过渡,谁就是技术标准,谁就是产业标准。因此,技术性的比较也有战略的竞争,就像ASML体系与NIKON和CANON体系的竞争,EV Group体系和MII体系的竞争。专家预测,半导体产业在本世纪初将会有大的并购和重组,我们可以清楚的看到,已经发生和正在发生的并购和重组实际上是体系的并购和重组,新的标准的产生过程。

3.2 经济性比较

相比较于技术性,经济性的比较尽管包含了系统本身的成本、系统的运行成本、掩模版制造成本、光刻胶的制造及消耗成本、配套检测和工艺监控设备的投入成本等,但我们可以量化它,固定制约的因素,只要确定了技术路径和标准,经济性的比较非常清楚。

4 未来光刻技术的发展

随着电子产业的技术进步和发展,光刻技术及其应用已经远远超出了传统意义上的范畴,如上所述,它几乎包括和覆盖了所有微细图形的传递、微细图形的加工和微细图形的形成过程。因此,未来光刻技术的发展也是多元化的,应用领域的不同会有所不同,但就占有率最大的半导体和微电子产品领域而言,实现其纳米水平产业化的光刻技术将分成两个阶段,即90~32 nm阶段将仍然由深紫外和极紫外光刻结合一些新的技术手段去完成,同时纳米压印和扫描探针光刻技术在45 nm技术节点将会介入进行过渡;32 nm以下的规模生产光